JavaScript is required to use Bungie.net

Servicio de alertas
Mañana, Destiny 2 estará fuera de línea temporalmente debido a operaciones programadas de mantenimiento. Haz clic aquí para ver el estado de los servidores y actualizaciones de Destiny.

Foros

Editado por The Cellar Door: 4/2/2016 3:36:27 AM
7
Prove d⟨p⟩/dt =⟨-∂V/∂x⟩, given that d⟨p⟩/dt = -iħ∫∂/∂t (ψ*∂ψ/∂x) dx and ∂^2ψ/∂x∂t=∂^2ψ/∂t∂x Bonus points if you can tell me who's theorem this is without google.
English

Publicando en idioma:

 

Pórtate bien. Echa un vistazo a nuestro Código de conducta antes de publicar tu mensaje. Cancelar Editar Crear escuadra Publicar

  • I'm in calc right now and when I show people some equations they say all they see is a bunch of hieroglyphs. Well, that's exactly what I see right now. A bunch of hieroglyphs. Definitely not gonna take physics...

    Publicando en idioma:

     

    Pórtate bien. Echa un vistazo a nuestro Código de conducta antes de publicar tu mensaje. Cancelar Editar Crear escuadra Publicar

  • Editado por The Cellar Door: 4/2/2016 8:41:17 PM
    It's really not that bad. Anything with a d before it signifies that that's a derivative. Anything with a ∂ is a partial derivative. ψ is wave function. ħ is the reduced Planck constant. -i is denoting a complex number due to how it is derived. After understanding that it's just having a good grasp of calculus and a conceptual understanding of quantum mechanics.

    Publicando en idioma:

     

    Pórtate bien. Echa un vistazo a nuestro Código de conducta antes de publicar tu mensaje. Cancelar Editar Crear escuadra Publicar

  • Huh. After almost a year of doing calc, it makes a lot more sense. At first I saw everything as being really complex and hard to solve, but now everything is just equations and simple algebra, with some overlapping concepts like derivatives. Is it the same way for physics?

    Publicando en idioma:

     

    Pórtate bien. Echa un vistazo a nuestro Código de conducta antes de publicar tu mensaje. Cancelar Editar Crear escuadra Publicar

  • Yes, completely. As for Newton's laws of motion; Position is the second derivative of acceleration, and the first derivative of velocity. Acceleration is the second integral of position, and the first integral of velocity. You get more complexities when you're able to use partial derivatives to use variables with respect to other variables, which is why you'll tend to see the partial derivative sign a lot on higher level physics.

    Publicando en idioma:

     

    Pórtate bien. Echa un vistazo a nuestro Código de conducta antes de publicar tu mensaje. Cancelar Editar Crear escuadra Publicar

  • What is this seriously lol. I assume it's in your physics book?

    Publicando en idioma:

     

    Pórtate bien. Echa un vistazo a nuestro Código de conducta antes de publicar tu mensaje. Cancelar Editar Crear escuadra Publicar

  • Editado por The Cellar Door: 4/2/2016 4:44:11 AM
    Well besides that, it's a pretty well known theorem connecting classical physics and quantum mechanics, at least to anyone who's studied quantum mechanics before, I'd imagine they'd know this. It mathematically proves what Neils Bohr said, which is basically that in the upper limits of quantum mechanics, expectations should equal what classical physics says they should. This particular equation proves that for Newton's laws of motion.

    Publicando en idioma:

     

    Pórtate bien. Echa un vistazo a nuestro Código de conducta antes de publicar tu mensaje. Cancelar Editar Crear escuadra Publicar

  • Pretty cool stuff you are doing there.

    Publicando en idioma:

     

    Pórtate bien. Echa un vistazo a nuestro Código de conducta antes de publicar tu mensaje. Cancelar Editar Crear escuadra Publicar

No se te permite acceder a este contenido.
;
preload icon
preload icon
preload icon